
Telling stories through your
commits
BY JOEL CHIPPINDALE AT LRUG IN JANUARY 2015

CC BY-SA 4.0

http://creativecommons.org/licenses/by-sa/4.0/

Not about Ruby

Not even about git

Managing complexity

by Cory Doctorow (CC BY-SA)

https://www.flickr.com/photos/doctorow/2570338478

Your commit history is…

Kept forever

Always up to date

Searchable

$ git log --grep='Commit contents'

$ git log -S 'Diff contents'

$ git blame

“Every line of code is always
documented”

- Mislav Marohnić

from http://mislav.uniqpath.com/2014/02/hidden-documentation/

http://mislav.uniqpath.com/2014/02/hidden-documentation/

5 Principles

by Umberto Rotundo (CC BY)

https://www.flickr.com/photos/turyddu/4373880219

1. Make atomic commits

by lupusphotos (CC BY)

https://www.flickr.com/photos/lupusphotos/3274291447

$ git log --shortstat
commit: [REDACTED]
Author: [REDACTED]
Date: [REDACTED]

 bug fixes and wp 4.0.1 update

1377 files changed,
175405 insertions(+),
248 deletions(-)

What if this commit had
been split up?

21dfe89 Fix category page redirects
e275479 Fix deletion of author avatars
d824e02 Fix H2 headers on mobile
f8e36d4 Fix footer floating bug
d972537 Fix blog author avatar upload
d26e788 Remove unused author pages
7b91091 Fix blog feed
2f05036 Fix mixed content warnings
ed21e18 WordPress 4.0.1 update

Minimum viable commit

Avoid ‘and’ in commit messages

Make atomic commits
so that you can

make sense of your commits

2. Write good commit messages

by Ginny (CC BY-SA)

https://www.flickr.com/photos/ginnerobot/2549674296

What does good look like?

Short one line title

Longer description of what the change
does (if the title isn’t enough).

An explanation of why the change is
being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
does (if the title isn’t enough).

An explanation of why the change is
being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
does (if the title isn’t enough).

An explanation of why the change is
being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
does (if the title isn’t enough).

An explanation of why the change is
being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
does (if the title isn’t enough).

An explanation of why the change is
being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Correct the colour of FAQ link in course notice footer

PT: https://www.pivotaltracker.com/story/show/84753832

In some email clients the colour of the FAQ link in the
course notice footer was being displayed as blue instead of
white. The examples given in PT are all different versions
of Outlook. Outlook won't implement CSS changes that
include `!important` inline[1]. Therefore, since we were
using it to define the colour of that link, Outlook wasn't
applying that style and thus simply set its default style
(blue, like in most browsers). Removing that `!important`
should fix the problem.

[1] https://www.campaignmonitor.com/blog/post/3143/
outlook-2007-and-the-inline-important-declaration/

https://www.campaignmonitor.com/blog/post/3143/outlook-2007-and-the-inline-important-declaration/

Write good commit messages
(including why and the context)

so that you can
make sense of your commits

3. Revise history before sharing

by hoodedfang (CC BY-NC)

https://www.flickr.com/photos/hoodedfang/2862330522/

$ git rebase --interactive

Remove, reorder, edit,
merge and split commits

324d079 Fix typo in "Add Foo"
ab2189d Remove Bar
2a11e7d Add Foo

$ git rebase --interactive master

1bd241c Remove Bar
773e345 Add Foo

Rewrite history before sharing
so that your collaborators can
make sense of your commits

4. Use single purpose branches

by Jon Bennet (CC BY)

https://www.flickr.com/photos/nakedcharlton/72545825

When you take a diversion
move the work off the branch

Use single purpose branches
so that you can

make sense of your current work

5. Keep your history linear

Rebase before you merge

$ git merge --no-ff

Keep your history linear
so that you can
make sense of it

1. Make atomic commits
2. Write good commit messages
3. Revise history before sharing
4. Use single purpose branches
5. Keep your history linear

by beglen (CC BY)

https://www.flickr.com/photos/beglen/151603155

Questions?

@joelchippindale
joel.chippindale@futurelearn.com

futurelearn.com/blog
CC BY-SA 4.0

mailto:joel.chippindale@futurelearn.com
http://about.futurelearn.com/blog/
http://creativecommons.org/licenses/by-sa/4.0/

