
Simplify writing code with
deliberate commits
LRUG - June 2019

Joel Chippindale - @joelchippindale

Joel Chippindale
CTO at
Unmade

Video © Rapha Racing Limited 2019. All rights reserved

“If you can’t explain
it simply, you

don’t understand
it well enough.”

- Albert Einstein (probably)
en.wikiquote.org/wiki/Albert_Einstein

https://en.wikiquote.org/wiki/Albert_Einstein
https://en.wikiquote.org/wiki/Albert_Einstein

Image by Cory Doctorow (CC BY-SA)

Our work requires
us to make changes
to complex systems

https://www.flickr.com/photos/doctorow/2569515171

@joelchippindale

We learn to break down
complex problems into
small, simple steps

Image by WOCinTech Chat (CC BY)

Great developers are
really good at
breaking problems
into simple steps

https://www.flickr.com/photos/wocintechchat/25497475240/

@joelchippindale

This takes discipline and
willpower...

@joelchippindale

...but we can learn to
make it easier

@joelchippindale

When I started using git it
changed the way that I
developed software

5 Practices
1. Plan your commits
2. Use single purpose branches
3. Make atomic commits
4. Write good commit messages
5. Rewrite your history to tell a story (early

and often)

Image by Alexander Baxevanis (CC BY)

Practice 1:
Plan your commits

https://www.flickr.com/photos/futureshape/

@joelchippindale

Make a plan for the
commits that you will
make

@joelchippindale

What if you don't know
enough yet to make a
plan?

@joelchippindale

What if the plan changes?

@joelchippindale

Plan your commits ahead
of time and re-plan when
you need to

Image by Jon Bennet

Practice 2:
Use single purpose
branches

@joelchippindale

Name your branch to
reflect it's (single)
purpose

@joelchippindale

Notice when you are
starting to work on
something else

@joelchippindale

Notice if a commit has
value independent of the
branch

@joelchippindale

...and if it does, then
'cherry pick' it onto
master

git cherry-pick

Enables you to apply a single
commit from another branch
onto master

master

your-dev-branch$

A

B

C

D

master

your-dev-branchgit checkout master

A

B

C

D
$

master

your-dev-branch

A

B

C

D
git checkout master$

master

your-dev-branch

A

B

C

DD
git cherry-pick your-dev-branch$

master

your-dev-branch

A

B

C

D

D`

git cherry-pick your-dev-branch$

master

your-dev-branch

A

B

C

D

D`

git checkout your-dev-branch$

master

your-dev-branch

A

B

C

D

D`

git checkout your-dev-branch$

master

your-dev-branch

A

B

C

D

D`

git rebase master$

master

your-dev-branch

A

B

D`

C`
git rebase master$

@joelchippindale

Keep focussed by making
each development
branch single purpose

Image by lupusphotos (CC BY)

Practice 3:
Make atomic
commits

https://www.flickr.com/photos/lupusphotos/3274291447

@joelchippindale

Decide the one change
you are going to make
and commit it

@joelchippindale

How big a change should
I make?

@joelchippindale

Minimum valuable
commit

@joelchippindale

Be suspicious of 'and' in
your commit message

@joelchippindale

Notice when you start
doing something else and
stop

git add --patch

Enables you to review all your
changes and decide which to
add to your commit

$ git add --patch
diff --git a/generate_load.rb b/generate_load.rb
index 581b4a6..d59e157 100755
--- a/generate_load.rb
+++ b/generate_load.rb
@@ -6,7 +6,7 @@ options = {}
 optparse = OptionParser.new do|opts|
 opts.banner = "Usage: script.rb [options] url"
 options[:number_of_requests] = 10
- opts.on('-n', '--number_of_requests REQUESTS', 'Number of requests
default to true') do |requests|
+ opts.on('-n', '--number_of_requests REQUESTS', "Number of requests
default to #{options[:number_of_requests]}") do |requests|
 options[:number_of_requests] = requests.to_i
 end
 opts.on('-h', '--help', 'Display this screen') do
Stage this hunk [y,n,q,a,d,e,?]?

@joelchippindale

Make each step simple by
making atomic commits

Image by Ginny (CC BY-SA)

Practice 4:
Write good commit
messages

https://www.flickr.com/photos/ginnerobot/2549674296

dc8f609 It worked for me
a813998 Final commit, ready for tagging
834a288 Don't push this commit
7cd9b24 WTF
901b51c done. going to bed now.
57d298f WIP
704de26 This will definitely work
b4512c6 This might work
d90b710 Trying to fix it again
c57b012 Debug stuff

Note: These messages are mostly taken from http://whatthecommit.com

http://whatthecommit.com

@joelchippindale

What does good look
like?

Short one line title

Longer description of what the change achieves
(if the title isn’t enough).

An explanation of why the change is being made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
achieves (if the title isn’t enough).

An explanation of why the change is being
made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
achieves (if the title isn’t enough).

An explanation of why the change is being
made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
achieves (if the title isn’t enough).

An explanation of why the change is being
made.

Perhaps a discussion of context and/or
alternatives that were considered.

Short one line title

Longer description of what the change
achieves (if the title isn’t enough).

An explanation of why the change is being
made.

Perhaps a discussion of context and/or
alternatives that were considered.

Correct the colour of FAQ link in course notice footer

PT: https://www.pivotaltracker.com/story/show/84753832

In some email clients the colour of the FAQ link in the
course notice footer was being displayed as blue instead of
white. The examples given in PT are all different versions of
Outlook. Outlook won't implement CSS changes that include `!
important` inline[1]. Therefore, since we were using it to
define the colour of that link, Outlook wasn't applying that
style and thus simply set its default style (blue, like in
most browsers). Removing that `!important` should fix the
problem.

[1] https://www.campaignmonitor.com/blog/post/3143/
outlook-2007-and-the-inline-important-declaration/

https://www.campaignmonitor.com/blog/post/3143/outlook-2007-and-the-inline-important-declaration/
https://www.campaignmonitor.com/blog/post/3143/outlook-2007-and-the-inline-important-declaration/
https://www.campaignmonitor.com/blog/post/3143/outlook-2007-and-the-inline-important-declaration/

@joelchippindale

Clear space in your head
by writing good commit
messages

Image by Nic McPhee (CC BY-SA)

Practice 5:
Rewrite your history
to tell a simple story
(early and often)

https://www.flickr.com/photos/nics_events/2350462400/

@joelchippindale

You make mistakes and
change your mind

git rebase --interactive

Enables you to move, reorder,
edit, merge and split your
commits

343eed2 Fix typo in foo
ba66794 Add bar
90328f9 Add foo

git rebase --interactive master

 1 pick 90328f9 Add foo
 2 pick ba66794 Add bar
 3 pick 343eed2 Fix typo in foo
 4
 5 # Rebase c405e59..343eed2 onto c405e59 (3 commands)
 6 #
 7 # Commands:
 8 # p, pick <commit> = use commit
 9 # r, reword <commit> = use commit, but edit the commit message
 10 # e, edit <commit> = use commit, but stop for amending
 11 # s, squash <commit> = use commit, but meld into previous commit
 12 # f, fixup <commit> = like "squash", but discard this commit's log message
 13 # x, exec <command> = run command (the rest of the line) using shell
 14 # b, break = stop here (continue rebase later with 'git rebase --continue')
 15 # d, drop <commit> = remove commit
 16 # l, label <label> = label current HEAD with a name
 17 # t, reset <label> = reset HEAD to a label

 1 pick 90328f9 Add foo
 2 pick 343eed2 Fix typo in foo
 3 pick ba66794 Add bar
 4
 5 # Rebase c405e59..343eed2 onto c405e59 (3 commands)
 6 #
 7 # Commands:
 8 # p, pick <commit> = use commit
 9 # r, reword <commit> = use commit, but edit the commit message
 10 # e, edit <commit> = use commit, but stop for amending
 11 # s, squash <commit> = use commit, but meld into previous commit
 12 # f, fixup <commit> = like "squash", but discard this commit's log message
 13 # x, exec <command> = run command (the rest of the line) using shell
 14 # b, break = stop here (continue rebase later with 'git rebase --continue')
 15 # d, drop <commit> = remove commit
 16 # l, label <label> = label current HEAD with a name
 17 # t, reset <label> = reset HEAD to a label

 1 pick 90328f9 Add foo
 2 fixup 343eed2 Fix typo in foo
 3 pick ba66794 Add bar
 4
 5 # Rebase c405e59..343eed2 onto c405e59 (3 commands)
 6 #
 7 # Commands:
 8 # p, pick <commit> = use commit
 9 # r, reword <commit> = use commit, but edit the commit message
 10 # e, edit <commit> = use commit, but stop for amending
 11 # s, squash <commit> = use commit, but meld into previous commit
 12 # f, fixup <commit> = like "squash", but discard this commit's log message
 13 # x, exec <command> = run command (the rest of the line) using shell
 14 # b, break = stop here (continue rebase later with 'git rebase --continue')
 15 # d, drop <commit> = remove commit
 16 # l, label <label> = label current HEAD with a name
 17 # t, reset <label> = reset HEAD to a label

4a14d7b Add bar
c296093 Add foo

@joelchippindale

Make your progress clear
by rewriting your history
to tell a simple story

To recap the 5 practices
1. Plan your commits
2. Use single purpose branches
3. Make atomic commits
4. Write good commit messages
5. Rewrite your history to tell a story (early

and often)

git cherry-pick
git add --patch
git rebase --interactive

@joelchippindale

Following these 5
practices will free up your
brain and help you break
work into small steps

@joelchippindale

As an added bonus...

@joelchippindale

...it can also provide
valuable documentation
for your code

“Every line of code is
always documented”

- Mislav Marohnić
mislav.net/2014/02/hidden-documentation/

https://mislav.net/2014/02/hidden-documentation/
https://mislav.net/2014/02/hidden-documentation/

@joelchippindale

Thank you
Joel Chippindale - CTO at Unmade - @joelchippindale

Thanks to my teams at Unmade, FutureLearn and Econsultancy who have all
helped develop and refine these habits.

Come and work with us at Unmade
www.unmade.com/careers/

https://www.unmade.com/careers/

@joelchippindale

Links for more info
•A Branch in Time (a story about revision histories)
•Every line of code is always documented
•Telling stories with your Git history

https://www.youtube.com/watch?v=1NoNTqank_U
https://mislav.net/2014/02/hidden-documentation/
https://about.futurelearn.com/blog/telling-stories-with-your-git-history

